Overview

- Introduction
- Semiconservative replication of double-stranded DNA
- Modes of replication
- Unwinding, stabilization and stress relief
- Initiation by a primosome complex
- Chain elongation and proofreading
- Discontinuous replication of the lagging strand
- Terminator sequencing of DNA
- Molecular mechanisms of recombination

Problems of initiation, elongation, incorporation errors

- Initiation:
 - Replicons & origins of replication
 - RNA primers
- Elongation:
 - 5’ to 3’ only
 - Leading versus lagging strand
- Errors or incorporation
 - Proofreading

“It didn’t escape our attention that ...”
Overview

- Introduction
- **Semi-conservative replication of double-stranded DNA**
- Modes of replication
- Unwinding, stabilization and stress relief
- Initiation by a primosome complex
- Chain elongation and proofreading
- Discontinuous replication of the lagging strand
- Terminator sequencing of DNA
- Molecular mechanisms of recombination

Meselson-Stahl experiment

- Newly synthesized strands contain 15N only (heavy); these strands are denser and move to the lower band.
- Newly synthesized strands contain 14N only (light); these strands move to the upper band.

Equilibrium density gradient centrifugation

- Lower Cs\(^+\) concentration: more dense
- Higher Cs\(^+\) concentration: less dense

Semi-conservative replication of DNA in chromosomes
Semi-conservative replication of DNA in chromosomes

Overview
- Introduction
- Semiconservative replication of double-stranded DNA
- Modes of replication
 - Unwinding, stabilization and stress relief
 - Initiation by a primosome complex
 - Chain elongation and proofreading
 - Discontinuous replication of the lagging strand
 - Terminator sequencing of DNA
- Molecular mechanisms of recombination

Theta replication of circular chromosomes

- Actual length 1.6 mm (4.6 x 10^6 base pairs)
- Unreplated parental duplex
- Direction of movement of replication fork
- Replicated daughter strand
Theta replication of circular chromosomes

Rolling circle replication

Multi-ori
gins and bidirectional pg replication in eukaryotes

Rolling circle replication
Multiple origins and bidirectional replication in eukaryotes

Replication speed and duration in pro- and eucaryotes

- Eukaryotes:
 - 10-100 nt/sec => days / chr. (10^7)
 - => multiple origins of replication
 - => 5-10 hrs
- Prokaryotes:
 - 1,500 nt / sec => 30 min / genome
 - ↔ 20 min. generation interval!

Overview

- Introduction
- Semiconservative replication of double-stranded DNA
- Modes of replication
- Unwinding, stabilization and stress relief
- Initiation by a primosome complex
- Chain elongation and proofreading
- Discontinuous replication of the lagging strand
- Terminator sequencing of DNA
- Molecular mechanisms of recombination

Unwinding, stabilization and stress relief
Unwinding, stabilization and stress relief

Overview
- Introduction
- Semiconservative replication of double-stranded DNA
- Modes of replication
- Unwinding, stabilization and stress relief
- Initiation by a primosome complex
- Chain elongation and proofreading
- Discontinuous replication of the lagging strand
- Terminator sequencing of DNA
- Molecular mechanisms of recombination

Initiation by a primosome complex
- RNA primer
 - Procaryotes: primase (dnaG), 2-5 RNA residues
 - Eucaryotes: primosome (polymerase alpha + 15-20 proteins), 12 RNA residues + > 20 DNA residues
Overview

- Introduction
- Semiconservative replication of double-stranded DNA
- Modes of replication
- Unwinding, stabilization and stress relief
- Initiation by a primosome complex

Chain elongation and proofreading

- Elongation
- Procaryotes: polymerase III holoenzyme (2 x DNA polymerase III + > 7 proteins)
- Eucaryotes: polymerase delta
- Replication errors: rate and cause
- Proofreading ⇔ exonuclease 3’ to 5’ activity

5’ to 3’ chain elongation

Proofreading
Proofreading precludes 3’ to 5’ elongation

Overview
- Introduction
- Semiconservative replication of double-stranded DNA
- Modes of replication
- Unwinding, stabilization and stress relief
- Initiation by a primosome complex
- Chain elongation and proofreading
- Discontinuous replication of the lagging strand
- Terminator sequencing of DNA
- Molecular mechanisms of recombination

Discontinuous replication of the lagging strand
- Leading vs lagging strand, Okazaki fragments
- Joining of the precursor fragments
 - Procaryotes:
 - Pol I (5’ to 3’ exonuclease activity)
 - + ligase
 - Eucaryotes
 - Replication Protein A
 - Pol delta
 - Ligase

Leading vs lagging strand, Okazaki fragments
Leading vs lagging strand, Okazaki fragments

- Replicated daughter strand
- Single-stranded region in lagging strand
- Unreplicated parental strand

DNA joining of precursor fragments - procaryotes

- 5’ to 3’ exonuclease activity of pol I
 - Removes RNA primer
 - Generates 5’ P-end (vs 5’ PPP-end of primer)
- + ligase

DNA joining of precursor fragments - eucaryotes

Overview

- Introduction
- Semiconservative replication of double-stranded DNA
- Modes of replication
- Unwinding, stabilization and stress relief
- Initiation by a primosome complex
- Chain elongation and proofreading
- Discontinuous replication of the lagging strand
- Terminator sequencing of DNA
- Molecular mechanisms of recombination
Sequencing of DNA

Dideoxyterminators

3′-OH in normal DNA allows elongation.

A DNA strand terminating in a dideoxynucleotide cannot be elongated because a 3′-OH is necessary for polymerization.

Sanger sequencing

Massive Parallel Sequencing

Reversible terminators

Genomic DNA is sheared and adaptors for PCR primers attached. The fragments are separated into single strands, and each is attached to a random position on a surface of about 6 cm² (2.5 cm²) that is densely packed with immobilized primers. Sequencing reactions are carried out with all four nucleotides, each in the form of a reversible terminator with a unique fluorescence emission.

In each round of PCR, the template strand binds with a nearby immobilized primer, and multiple rounds of PCR eventually create a cluster of about 1000 copies of each original template strand.
Massive Parallel Sequencing Pyrosequencing

Overview
- Introduction
- Semiconservative replication of double-stranded DNA
- Modes of replication
- Unwinding, stabilization and stress relief
- Initiation by a primosome complex
- Chain elongation and proofreading
- Discontinuous replication of the lagging strand
- Terminator sequencing of DNA
- Molecular mechanisms of recombination

Recombination: double-strand break and repair model
Recombination: Mismatch repair and gene conversion